TV

02 February, 2009

software download

software download
software download
software download

Computer software, or just software is a general term used to describe a collection of computer programs, procedures and documentation that perform some tasks on a computer system.[1]

The term includes:

Software includes websites, programs, video games etc. that are coded by programming languages like C, C++, etc.

"Software" is sometimes used in a broader context to mean anything which is not hardware but which is used with hardware, such as film, tapes and records.[2]

Contents

Overview

Computer software are often regarded as anything but hardware, meaning that the "hard" are the parts that are tangible (able to hold) while the "soft" part is the intangible objects inside the computer. Software encompasses an extremely wide array of products and technologies developed using different techniques like programming languages, scripting languages etc. The types of software include web pages developed by technologies like HTML, PHP, Perl, JSP, ASP.NET, XML, and desktop applications like Microsoft Word, OpenOffice developed by technologies like C, C++, Java, C#, etc. Software usually runs on an underlying operating system (which is a software also) like Microsoft Windows, a Linux distribution (which may run GNOME or KDE), Sun Solaris etc. Software also includes video games like the Super Mario Bros., Grand Theft Auto for personal computers or video game consoles.

Also a software usually runs on a software platform which can either be provided by the operating system or by operating system independent platforms like Java and .NET. Software written for one platform is usually unable to run on other platforms so that for instance, Microsoft Windows software will not be able to run on Mac OS because of the differences relating to the platforms and their own standards. These applications can work using software porting, interpreters or re-writing the source code for the specific platform.

Relationship to computer hardware

Computer software is so called to distinguish it from computer hardware, which encompasses the physical interconnections and devices required to store and execute (or run) the software. At the lowest level, software consists of a machine language specific to an individual processor. A machine language consists of groups of binary values signifying processor instructions which change the state of the computer from its preceding state. Software is an ordered sequence of instructions for changing the state of the computer hardware in a particular sequence. It is usually written in high-level programming languages that are easier and more efficient for humans to use (closer to natural language) than machine language. High-level languages are compiled or interpreted into machine language object code. Software may also be written in an assembly language, essentially, a mnemonic representation of a machine language using a natural language alphabet. Assembly language must be assembled into object code via an assembler.

The term "software" was first used in this sense by John W. Tukey in 1958.[3] In computer science and software engineering, computer software is all computer programs. The theory that is the basis for most modern software was first proposed by Alan Turing in his 1935 essay Computable numbers with an application to the Entscheidungsproblem.[4]

Types of software

A layer structure showing where Operating System is located on generally used software systems on desktops
An example text editor, Vim
Industrial Automation with robots engaged in vehicle assembly

Practical computer systems divide software systems into three major classes: system software, programming software and application software, although the distinction is arbitrary, and often blurred.

System software

System software helps run the computer hardware and computer system. It includes:

The purpose of systems software is to insulate the applications programmer as much as possible from the details of the particular computer complex being used, especially memory and other hardware features, and such as accessory devices as communications, printers, readers, displays, keyboards, etc.

Programming software

Programming software usually provides tools to assist a programmer in writing computer programs, and software using different programming languages in a more convenient way. The tools include:

An Integrated development environment (IDE) merges those tools into a software bundle, and a programmer may not need to type multiple commands for compiling, interpreting, debugging, tracing, etc., because the IDE usually has an advanced graphical user interface, or GUI.

Application software

Application software allows end users to accomplish one or more specific (non-computer related) tasks. Typical applications include:

Businesses are probably the biggest users of application software, but almost every field of human activity now uses some form of application software.

Software topics

Architecture

See also: Software architecture

Users often see things differently than programmers. People who use modern general purpose computers (as opposed to embedded systems, analog computers, supercomputers, etc.) usually see three layers of software performing a variety of tasks: platform, application, and user software.

  • Platform software: Platform includes the firmware, device drivers, an operating system, and typically a graphical user interface which, in total, allow a user to interact with the computer and its peripherals (associated equipment). Platform software often comes bundled with the computer. On a PC you will usually have the ability to change the platform software.
  • Application software: Application software or Applications are what most people think of when they think of software. Typical examples include office suites and video games. Application software is often purchased separately from computer hardware. Sometimes applications are bundled with the computer, but that does not change the fact that they run as independent applications. Applications are almost always independent programs from the operating system, though they are often tailored for specific platforms. Most users think of compilers, databases, and other "system software" as applications.
  • User-written software: End-user development tailors systems to meet users' specific needs. User software include spreadsheet templates, word processor macros, scientific simulations, and scripts for graphics and animations. Even email filters are a kind of user software. Users create this software themselves and often overlook how important it is. Depending on how competently the user-written software has been integrated into purchased application packages, many users may not be aware of the distinction between the purchased packages, and what has been added by fellow co-workers.

Documentation

Most commercial and large software have software documentation so that the end user can understand the program, what it does and how to use it. Without a clear documentation a software can be hard to use and especially if it is a very specialized and relatively complex software like the Photoshop, AutoCAD, etc.

Library

Main article: Software library

A program may not be sufficiently complete for execution by a computer. In particular, it may require additional software from a software library in order to be complete. Such a library may include software components used by stand-alone programs, but which cannot work on their own. Thus, programs may include standard routines that are common to many programs, extracted from these libraries. Libraries may also include 'stand-alone' programs which are activated by some computer event and/or perform some function (e.g., of computer 'housekeeping') but do not return data to their calling program. Libraries may be called by one to many other programs; programs may call zero to many other programs.

Execution

Main article: Execution (computing)

Computer software has to be "loaded" into the computer's storage (such as a hard drive, memory, or RAM). Once the software has loaded, the computer is able to execute the software. This involves passing instructions from the application software, through the system software, to the hardware which ultimately receives the instruction as machine code. Each instruction causes the computer to carry out an operation -- moving data, carrying out a computation, or altering the control flow of instructions.

Data movement is typically from one place in memory to another. Sometimes it involves moving data between memory and registers which enable high-speed data access in the CPU. Moving data, especially large amounts of it, can be costly. So, this is sometimes avoided by using "pointers" to data instead. Computations include simple operations such as incrementing the value of a variable data element. More complex computations may involve many operations and data elements together.

Quality and reliability

Software quality is very important, especially for commercial and system software like Microsoft Office, Microsoft Windows, Linux, etc. If software is faulty (buggy), it can delete a person's work, crash the computer and do other unexpected things. Faults and errors are called "bugs". Many bugs are discovered and eliminated (debugged) through software testing. However, software testing rarely -- if ever -- eliminates every bug; some programmers say that "every program has at least one more bug" (Lubarsky's Law). All major software companies, such as Microsoft, Novell and Sun Microsystems, have their own software testing departments with the specific goal of just testing. Software can be tested through unit testing, regression testing and other methods, which are done manually, or most commonly, automatically, since the amount of code to be tested can be quite large. For instance, NASA has extremely rigorous software testing procedures for its Space Shuttle and other programs because faulty software can crash the whole program and make the vehicle not functional, at great expense.

License

Main article: Software license

The software's license gives the user the right to use the software in the licensed environment. Some software comes with the license when purchased off the shelf, or an OEM license when bundled with hardware. Other software comes with a free software license, granting the recipient the rights to modify and redistribute the software. Software can also be in the form of freeware or shareware. See also License Management.

Patents

Main article: Software patent

Software can be patented; however software patents can be controversial in the software industry with many people holding different views about it. Some believe that they hinder software development, while others argue that software patents provide an important incentive to spur software innovation. See software patent debate. The controversy over software patents is that a specific algorithm or technique that the software has cannot be duplicated by others and is considered an intellectual property and copyright infringement depending on the severity.

Ethics and rights

Main article: Computer ethics

There is more than one approach to creating, licensing, and distributing software. For instance, the free software or the open source community produces software under licensing that makes it free for inspection of its code, modification of its code, and distribution. While the software released under an open source license (such as General Public License, or GPL for short) can be sold for money[5], the distribution cannot be restricted in the same way as software with copyright and patent restrictions (used by corporations to require licensing fees).

While some advocates of free software use slogans such as "information wants to be free," hinting that it is easy to copy digital data and that the licenses (enforced through laws) are unnatural restrictions, other creators and users of open source software recognize it to be one model among many for software creation, licensing, and distribution. And the laws themselves are put into place for the ostensible purpose of increasing creative output, by allowing the creators to control and profit most effectively from their intellectual property.

Implementation

Software is usually created (coded/written/programmed) and designed in integrated development environments (IDE) like emacs, xemacs, Microsoft Visual Studio and Eclipse that can simplify the process and compile the program. As noted in different section, software is usually created on top of an existing software and the application programming interface (API) that the underlying software provides like GTK+, JavaBeans, Swing etc. Libraries (APIs) are categorized for different purposes. For instance JavaBeans library is used for designing enterprise applications, Windows Forms library is used for designing graphical user interface (GUI) applications like Microsoft Word and Windows Communication Foundation is used for designing web services. There are also underlying concepts in computer programming like quicksort, hashtable, array, binary tree that can be useful to creating a software. When a program is designed, it relies on the API. For instance, if a user is designing a Microsoft Windows desktop application, he/she might use the .NET Windows Forms library to design the desktop application and call its APIs like Form1.Close()

and Form1.Show()
to close or open the application and write the additional operations him/herself that it need to have. Without these APIs, the programmer needs to write these APIs him/herself. Companies like Sun Microsystems, Novell and Microsoft provide their own APIs so that many applications are written using their software libraries that usually have numerous APIs in them.

Software has special economic characteristics that make its design, creation, and distribution different from most other economic goods.[6][7]

Industry and organizations

Main article: Software industry

There are many software companies in the world and selling software can be quite profitable industry. For instance, Bill Gates, the founder of Microsoft is the second richest man in the world in 2008 largely by selling the Microsoft Windows and Microsoft Office software programs, and same goes for Larry Ellison largely through his Oracle database software.

There are many non-profit software organizations like the Free Software Foundation, GNU Project, Mozilla Foundation. Also there are many software standards organizations like the W3C and others that try to come up with a software standard so that many software can work and interoperate with each other like through standards such as XML, HTML, HTTP, FTP, etc.

Some large software companies include Microsoft, IBM, Oracle, SAP and HP.[8]

Web hosting service

Web hosting service


A web hosting service is a type of Internet hosting service that allows individuals and organizations to provide their own website accessible via the World Wide Web. Web hosts are companies that provide space on a server they own for use by their clients as well as providing Internet connectivity, typically in a data center. Web hosts can also provide data center space and connectivity to the Internet for servers they do not own to be located in their data center, called colocation.

Service scope

The scope of hosting services varies widely. The most basic is web page and small-scale file hosting, where files can be uploaded via File Transfer Protocol (FTP) or a Web interface. The files are usually delivered to the Web "as is" or with little processing. Many Internet service providers (ISPs) offer this service free to their subscribers. People can also obtain Web page hosting from other, alternative service providers. Personal web site hosting is typically free, advertisement-sponsored, or cheap. Business web site hosting often has a higher expense.

Single page hosting is generally sufficient only for personal web pages. A complex site calls for a more comprehensive package that provides database support and application development platforms (e.g. PHP, Java, Ruby on Rails, ColdFusion, and ASP.NET). These facilities allow the customers to write or install scripts for applications like forums and content management. For e-commerce, SSL is also highly recommended.

The host may also provide an interface or control panel for managing the Web server and installing scripts as well as other services like e-mail. Some hosts specialize in certain software or services (e.g. e-commerce). They are commonly used by larger companies to outsource network infrastructure to a hosting company.

Hosting reliability and uptime

Multiple racks of servers.

Hosting uptime refers to the percentage of time the host is accessible via the internet. Many providers state that they aim for a 99.9% uptime, but there may be server restarts and planned (or unplanned) maintenance in any hosting environment.

A common claim from the popular hosting providers is '99% or 99.9% server uptime' but this often refers only to a server being powered on and doesn't account for network downtime. Real downtime can potentially be larger than the percentage guaranteed by the provider. Many providers tie uptime and accessibility into their own service level agreement (SLA). SLAs sometimes include refunds or reduced costs if performance goals are not met.

Types of hosting


A typical server "rack," commonly seen in colocation centres.

Internet hosting services can run Web servers; see Internet hosting services.

Hosting services limited to the Web:

  • Free web hosting service: is free, (sometimes) advertisement-supported web hosting, and is often limited when compared to paid hosting. [1]
  • Shared web hosting service: one's Web site is placed on the same server as many other sites, ranging from a few to hundreds or thousands. Typically, all domains may share a common pool of server resources, such as RAM and the CPU. The features available with this type of service can be quite extensive. A shared website may be hosted with a reseller.
  • Reseller web hosting: allows clients to become web hosts themselves. Resellers could function, for individual domains, under any combination of these listed types of hosting, depending on who they are affiliated with as a provider. Resellers' accounts may vary tremendously in size: they may have their own virtual dedicated server to a colocated server. Many resellers provide a nearly identical service to their provider's shared hosting plan and provide the technical support themselves.
  • Virtual Dedicated Server: dividing a server into virtual servers, where each user feels like they're on their own dedicated server, but they're actually sharing a server with many other users. The users may have root access to their own virtual space. This is also known as a virtual private server or VPS. Customers are sometimes responsible for patching and maintaining the server.
  • Dedicated hosting service: the user gets his or her own Web server and gains full control over it (root access for Linux/administrator access for Windows); however, the user typically does not own the server. Another type of Dedicated hosting is Self-Managed or Unmanaged. This is usually the least expensive for Dedicated plans. The user has full administrative access to the box, which means the client is responsible for the security and maintenance of his own dedicated box.
  • Managed hosting service: the user gets his or her own Web server but is not allowed full control over it (root access for Linux/administrator access for Windows); however, they are allowed to manage their data via FTP or other remote management tools. The user is disallowed full control so that the provider can guarantee quality of service by not allowing the user to modify the server or potentially create configuration problems. The user typically does not own the server. The server is leased to the client.
  • Colocation web hosting service: similar to the dedicated web hosting service, but the user owns the colo server; the hosting company provides physical space that the server takes up and takes care of the server. This is the most powerful and expensive type of the web hosting service. In most cases, the colocation provider may provide little to no support directly for their client's machine, providing only the electrical, Internet access, and storage facilities for the server. In most cases for colo, the client would have his own administrator visit the data center on site to do any hardware upgrades or changes.
  • Clustered hosting: having multiple servers hosting the same content for better resource utilization. Clustered Servers are a perfect solution for high-availability dedicated hosting, or creating a scalable web hosting solution.
  • Grid hosting : this form of distributed hosting is when a server cluster acts like a grid and is composed of multiple nodes.
  • Home server: usually a single machine placed in a private residence can be used to host one or more web sites from a usually consumer-grade broadband connection. These can be purpose-built machines or more commonly old PCs. Some ISPs actively attempt to block home servers by disallowing incoming requests to TCP port 80 of the user's connection and by refusing to provide static IP addresses. A common way to attain a reliable DNS hostname is by creating an account with a dynamic DNS service. A dynamic DNS service will automatically change the IP address that a URL points to when the IP address changes.

Some specific types of hosting provided by web host service providers:

Obtaining hosting

Web hosting is often provided as part of a general Internet access plan; there are many free and paid providers offering these services.

A customer needs to evaluate the requirements of the application to choose what kind of hosting to use. Such considerations include database server software, scripting software, and operating system. Most hosting providers provide Linux-based web hosting which offers a wide range of different software. A typical configuration for a Linux server is the LAMP platform: Linux, Apache, MySQL, and PHP/Perl/Python. The webhosting client may want to have other services, such as email for their business domain, databases or multi-media services for streaming media. A customer may also choose Windows as the hosting platform. The customer still can choose from PHP, Perl, and Python but may also use ASP .Net or Classic ASP.

Web hosting packages often include a Web Content Management System, so the end-user doesn't have to worry about the more technical aspects. These Web Content Management systems are great for the average user, but for those who want more control over their website design, this feature may not be adequate.

Most modern desktop operating systems (Windows, Linux, Mac OS X) are also capable of running web server software, and thus can be used to host basic websites.

One may also search the Internet to find active webhosting message boards and forums that may provide feedback on what type of webhosting company may suit his/her needs. However some of these message boards and forums will require not only registration, but a paid subscription to be able to access the sections and sub forums with such information.

01 February, 2009

IIT-JEE Syllabus

Complete IIT-JEE Syllabus:
  1. JEE Mathematic Syllabus
  2. JEE Physics Syllabus
  3. JEE Chemistry Syllabus
  4. JEE Aptitude Test in B. Arch. & B. Des.

IIT-JEE Mathematics Syllabus:

Algebra

Algebra of complex numbers, addition, multiplication, conjugation, polar representation, properties of modulus and principal argument, triangle inequality, cube roots of unity, geometric interpretations.

Quadratic equations with real coefficients, relations between roots and coefficients, formation of quadratic equations with given roots, symmetric functions of roots.

Arithmetic, geometric and harmonic progressions, arithmetic, geometric and harmonic means, sums of finite arithmetic and geometric progressions, infinite geometric series, sums of squares and cubes of the first n natural numbers.

Logarithms and their properties.

Permutations and combinations, Binomial theorem for a positive integral index, properties of binomial coefficients.

Matrices as a rectangular array of real numbers, equality of matrices, addition, multiplication by a scalar and product of matrices, transpose of a matrix, determinant of a square matrix of order up to three, inverse of a square matrix of order up to three, properties of these matrix operations, diagonal, symmetric and skew-symmetric matrices and their properties, solutions of simultaneous linear equations in two or three variables.

Addition and multiplication rules of probability, conditional probability, independence of events, computation of probability of events using permutations and combinations.

Trigonometry

Trigonometric functions, their periodicity and graphs, addition and subtraction formulae, formulae involving multiple and sub-multiple angles, general solution of trigonometric equations.

Relations between sides and angles of a triangle, sine rule, cosine rule, half-angle formula and the area of a triangle, inverse trigonometric functions (principal value only).

Analytical geometry

Two dimensions: Cartesian coordinates, distance between two points, section formulae, shift of origin.

Equation of a straight line in various forms, angle between two lines, distance of a point from a line. Lines through the point of intersection of two given lines, equation of the bisector of the angle between two lines, concurrency of lines, centroid, orthocentre, incentre and circumcentre of a triangle.

Equation of a circle in various forms, equations of tangent, normal and chord.

Parametric equations of a circle, intersection of a circle with a straight line or a circle, equation of a circle through the points of intersection of two circles and those of a circle and a straight line.

Equations of a parabola, ellipse and hyperbola in standard form, their foci, directrices and eccentricity, parametric equations, equations of tangent and normal.

Locus Problems.

Three dimensions: Direction cosines and direction ratios, equation of a straight line in space, equation of a plane, distance of a point from a plane.

Differential calculus

Real valued functions of a real variable, into, onto and one-to-one functions, sum, difference, product and quotient of two functions, composite functions, absolute value, polynomial, rational, trigonometric, exponential and logarithmic functions.

Limit and continuity of a function, limit and continuity of the sum, difference, product and quotient of two functions, l'Hospital rule of evaluation of limits of functions.

Even and odd functions, inverse of a function, continuity of composite functions, intermediate value property of continuous functions.

Derivative of a function, derivative of the sum, difference, product and quotient of two functions, chain rule, derivatives of polynomial, rational, trigonometric, inverse trigonometric, exponential and logarithmic functions.

Derivatives of implicit functions, derivatives up to order two, geometrical interpretation of the derivative, tangents and normals, increasing and decreasing functions, maximum and minimum values of a function, applications of Rolle's Theorem and Lagrange's Mean Value Theorem.

Integral calculus

Integration as the inverse process of differentiation, indefinite integrals of standard functions, definite integrals and their properties, application of the Fundamental Theorem of Integral Calculus.

Integration by parts, integration by the methods of substitution and partial fractions, application of definite integrals to the determination of areas involving simple curves.

Formation of ordinary differential equations, solution of homogeneous differential equations, variables separable method, linear first order differential equations.

Vectors

Addition of vectors, scalar multiplication, scalar products, dot and cross products, scalar triple products and their geometrical interpretations.

IIT-JEE Chemistry Syllabus:

Physical chemistry

General topics: The concept of atoms and molecules; Dalton's atomic theory; Mole concept; Chemical formulae; Balanced chemical equations; Calculations (based on mole concept) involving common oxidation-reduction, neutralisation, and displacement reactions; Concentration in terms of mole fraction, molarity, molality and normality.

Gaseous and liquid states: Absolute scale of temperature, ideal gas equation; Deviation from ideality, van der Waals equation; Kinetic theory of gases, average, root mean square and most probable velocities and their relation with temperature; Law of partial pressures; Vapour pressure; Diffusion of gases.

Atomic structure and chemical bonding: Bohr model, spectrum of hydrogen atom, quantum numbers; Wave-particle duality, de Broglie hypothesis; Uncertainty principle; Quantum mechanical picture of hydrogen atom (qualitative treatment), shapes of s, p and d orbitals; Electronic configurations of elements (up to atomic number 36); Aufbau principle; Pauli's exclusion principle and Hund's rule; Orbital overlap and covalent bond; Hybridisation involving s, p and d orbitals only; Orbital energy diagrams for homonuclear diatomic species; Hydrogen bond; Polarity in molecules, dipole moment (qualitative aspects only); VSEPR model and shapes of molecules (linear, angular, triangular, square planar, pyramidal, square pyramidal, trigonal bipyramidal, tetrahedral and octahedral).

Energetics: First law of thermodynamics; Internal energy, work and heat, pressure-volume work; Enthalpy, Hess's law; Heat of reaction, fusion and vapourization; Second law of thermodynamics; Entropy; Free energy; Criterion of spontaneity.

Chemical equilibrium: Law of mass action; Equilibrium constant, Le Chatelier's principle (effect of concentration, temperature and pressure); Significance of DG and DGo in chemical equilibrium; Solubility product, common ion effect, pH and buffer solutions; Acids and bases (Bronsted and Lewis concepts); Hydrolysis of salts.

Electrochemistry: Electrochemical cells and cell reactions; Electrode potentials; Nernst equation and its relation to DG; Electrochemical series, emf of galvanic cells; Faraday's laws of electrolysis; Electrolytic conductance, specific, equivalent and molar conductance, Kohlrausch's law; Concentration cells.

Chemical kinetics: Rates of chemical reactions; Order of reactions; Rate constant; First order reactions; Temperature dependence of rate constant (Arrhenius equation).

Solid state: Classification of solids, crystalline state, seven crystal systems (cell parameters a, b, c, a, b, g), close packed structure of solids (cubic), packing in fcc, bcc and hcp lattices; Nearest neighbours, ionic radii, simple ionic compounds, point defects.

Solutions: Raoult's law; Molecular weight determination from lowering of vapor pressure, elevation of boiling point and depression of freezing point.

Surface chemistry: Elementary concepts of adsorption (excluding adsorption isotherms); Colloids: types, methods of preparation and general properties; Elementary ideas of emulsions, surfactants and micelles (only definitions and examples).

Nuclear chemistry: Radioactivity: isotopes and isobars; Properties of a, b and g rays; Kinetics of radioactive decay (decay series excluded), carbon dating; Stability of nuclei with respect to proton-neutron ratio; Brief discussion on fission and fusion reactions.

Inorganic Chemistry

Isolation/preparation and properties of the following non-metals: Boron, silicon, nitrogen, phosphorus, oxygen, sulphur and halogens; Properties of allotropes of carbon (only diamond and graphite), phosphorus and sulphur.

Preparation and properties of the following compounds: Oxides, peroxides, hydroxides, carbonates, bicarbonates, chlorides and sulphates of sodium, potassium, magnesium and calcium; Boron: diborane, boric acid and borax; Aluminium: alumina, aluminium chloride and alums; Carbon: oxides and oxyacid (carbonic acid); Silicon: silicones, silicates and silicon carbide; Nitrogen: oxides, oxyacids and ammonia; Phosphorus: oxides, oxyacids (phosphorus acid, phosphoric acid) and phosphine; Oxygen: ozone and hydrogen peroxide; Sulphur: hydrogen sulphide, oxides, sulphurous acid, sulphuric acid and sodium thiosulphate; Halogens: hydrohalic acids, oxides and oxyacids of chlorine, bleaching powder; Xenon fluorides; Fertilizers: commercially available (common) NPK type.

Transition elements (3d series): Definition, general characteristics, oxidation states and their stabilities, colour (excluding the details of electronic transitions) and calculation of spin-only magnetic moment; Coordination compounds: nomenclature of mononuclear coordination compounds, cis-trans and ionisation isomerisms, hybridization and geometries of mononuclear coordination compounds (linear, tetrahedral, square planar and octahedral).

Preparation and properties of the following compounds: Oxides and chlorides of tin and lead; Oxides, chlorides and sulphates of Fe2+, Cu2+ and Zn2+; Potassium permanganate, potassium dichromate, silver oxide, silver nitrate, silver thiosulphate.

Ores and minerals: Commonly occurring ores and minerals of iron, copper, tin, lead, magnesium, aluminium, zinc and silver.

Extractive metallurgy: Chemical principles and reactions only (industrial details excluded); Carbon reduction method (iron and tin); Self reduction method (copper and lead); Electrolytic reduction method (magnesium and aluminium); Cyanide process (silver and gold).

Principles of qualitative analysis: Groups I to V (only Ag+, Hg2+, Cu2+, Pb2+, Bi3+, Fe3+, Cr3+, Al3+, Ca2+, Ba2+, Zn2+, Mn2+ and Mg2+); Nitrate, halides (excluding fluoride), sulphate, sulphide and sulphite.

Organic Chemistry

Concepts: Hybridisation of carbon; Sigma and pi-bonds; Shapes of molecules; Structural and geometrical isomerism; Optical isomerism of compounds containing up to two asymmetric centers, (R,S and E,Z nomenclature excluded); IUPAC nomenclature of simple organic compounds (only hydrocarbons, mono-functional and bi-functional compounds); Conformations of ethane and butane (Newman projections); Resonance and hyperconjugation; Keto-enol tautomerism; Determination of empirical and molecular formula of simple compounds (only combustion method); Hydrogen bonds: definition and their effects on physical properties of alcohols and carboxylic acids; Inductive and resonance effects on acidity and basicity of organic acids and bases; Polarity and inductive effects in alkyl halides; Reactive intermediates produced during homolytic and heterolytic bond cleavage; Formation, structure and stability of carbocations, carbanions and free radicals.

Preparation, properties and reactions of alkanes: Homologous series, physical properties of alkanes (melting points, boiling points and density); Combustion and halogenation of alkanes; Preparation of alkanes by Wurtz reaction and decarboxylation reactions.

Preparation, properties and reactions of alkenes and alkynes: Physical properties of alkenes and alkynes (boiling points, density and dipole moments); Acidity of alkynes; Acid catalysed hydration of alkenes and alkynes (excluding the stereochemistry of addition and elimination); Reactions of alkenes with KMnO4 and ozone; Reduction of alkenes and alkynes; Preparation of alkenes and alkynes by elimination reactions; Electrophilic addition reactions of alkenes with X2, HX, HOX and H2O (X=halogen); Addition reactions of alkynes; Metal acetylides.

Reactions of benzene: Structure and aromaticity; Electrophilic substitution reactions: halogenation, nitration, sulphonation, Friedel-Crafts alkylation and acylation; Effect of o-, m- and p-directing groups in monosubstituted benzenes.

Phenols: Acidity, electrophilic substitution reactions (halogenation, nitration and sulphonation); Reimer-Tieman reaction, Kolbe reaction.

Characteristic reactions of the following (including those mentioned above): Alkyl halides: rearrangement reactions of alkyl carbocation, Grignard reactions, nucleophilic substitution reactions; Alcohols: esterification, dehydration and oxidation, reaction with sodium, phosphorus halides, ZnCl2/conc.-HCl, conversion of alcohols into aldehydes and ketones; Aldehydes and Ketones: oxidation, reduction, oxime and hydrazone formation; aldol condensation, Perkin reaction; Cannizzaro reaction; haloform reaction and nucleophilic addition reactions (Grignard addition); Carboxylic acids: formation of esters, acid chlorides and amides, ester hydrolysis; Amines: basicity of substituted anilines and aliphatic amines, preparation from nitro compounds, reaction with nitrous acid, azo coupling reaction of diazonium salts of aromatic amines, Sandmeyer and related reactions of diazonium salts; carbylamine reaction; Haloarenes: nucleophilic aromatic substitution in haloarenes and substituted haloarenes - (excluding Benzyne mechanism and Cine substitution).

Carbohydrates: Classification; mono and di-saccharides (glucose and sucrose); Oxidation, reduction, glycoside formation and hydrolysis of sucrose.

Amino acids and peptides: General structure (only primary structure for peptides) and physical properties.

Properties and uses of some important polymers: Natural rubber, cellulose, nylon, teflon and PVC.

Practical organic chemistry: Detection of elements (N, S, halogens); Detection and identification of the following functional groups: hydroxyl (alcoholic and phenolic), carbonyl (aldehyde and ketone), carboxyl, amino and nitro; Chemical methods of separation of mono-functional organic compounds from binary mixtures.

IIT-JEE Physics Syllabus:

General: Units and dimensions, dimensional analysis; least count, significant figures; Methods of measurement and error analysis for physical quantities pertaining to the following experiments: Experiments based on using vernier calipers and screw gauge (micrometer), Determination of g using simple pendulum, Young's modulus by Searle's method, Specific heat of a liquid using calorimeter, focal length of a concave mirror and a convex lens using u-v method, Speed of sound using resonance column, Verification of Ohm's law using voltmeter and ammeter, and specific resistance of the material of a wire using meter bridge and post office box.

Mechanics: Kinematics in one and two dimensions (Cartesian coordinates only), projectiles; Circular motion (uniform and non-uniform); Relative velocity.

Newton's laws of motion; Inertial and uniformly accelerated frames of reference; Static and dynamic friction; Kinetic and potential energy; Work and power; Conservation of linear momentum and mechanical energy.

Systems of particles; Centre of mass and its motion; Impulse; Elastic and inelastic collisions.

Law of gravitation; Gravitational potential and field; Acceleration due to gravity; Motion of planets and satellites in circular orbits.

Rigid body, moment of inertia, parallel and perpendicular axes theorems, moment of inertia of uniform bodies with simple geometrical shapes; Angular momentum; Torque; Conservation of angular momentum; Dynamics of rigid bodies with fixed axis of rotation; Rolling without slipping of rings, cylinders and spheres; Equilibrium of rigid bodies; Collision of point masses with rigid bodies.

Linear and angular simple harmonic motions.

Hooke's law, Young's modulus.

Pressure in a fluid; Pascal's law; Buoyancy; Surface energy and surface tension, capillary rise; Viscosity (Poiseuille's equation excluded), Stoke's law; Terminal velocity, Streamline flow, Equation of continuity, Bernoulli's theorem and its applications.

Wave motion (plane waves only), longitudinal and transverse waves, Superposition of waves; progressive and stationary waves; Vibration of strings and air columns. Resonance; Beats; Speed of sound in gases; Doppler effect (in sound).

Thermal physics: Thermal expansion of solids, liquids and gases; Calorimetry, latent heat; Heat conduction in one dimension; Elementary concepts of convection and radiation; Newton's law of cooling; Ideal gas laws; Specific heats (Cv and Cp for monatomic and diatomic gases); Isothermal and adiabatic processes, bulk modulus of gases; Equivalence of heat and work; First law of thermodynamics and its applications (only for ideal gases). Blackbody radiation: absorptive and emissive powers; Kirchhoff's law, Wien's displacement law, Stefan's law.

Electricity and magnetism: Coulomb's law; Electric field and potential; Electrical Potential energy of a system of point charges and of electrical dipoles in a uniform electrostatic field, Electric field lines; Flux of electric field; Gauss's law and its application in simple cases, such as, to find field due to infinitely long straight wire, uniformly charged infinite plane sheet and uniformly charged thin spherical shell.

Capacitance; Parallel plate capacitor with and without dielectrics; Capacitors in series and parallel; Energy stored in a capacitor.

Electric current: Ohm's law; Series and parallel arrangements of resistances and cells; Kirchhoff's laws and simple applications; Heating effect of current.

Biot-Savart law and Ampere's law, magnetic field near a current-carrying straight wire, along the axis of a circular coil and inside a long straight solenoid; Force on a moving charge and on a current-carrying wire in a uniform magnetic field.

Magnetic moment of a current loop; Effect of a uniform magnetic field on a current loop; Moving coil galvanometer, voltmeter, ammeter and their conversions.

Electromagnetic induction: Faraday's law, Lenz's law; Self and mutual inductance; RC, LR and LC circuits with d.c. and a.c. sources.

Optics: Rectilinear propagation of light; Reflection and refraction at plane and spherical surfaces; Total internal reflection; Deviation and dispersion of light by a prism; Thin lenses; Combinations of mirrors and thin lenses; Magnification.

Wave nature of light: Huygen's principle, interference limited to Young's double-slit experiment.

Modern physics: Atomic nucleus; Alpha, beta and gamma radiations; Law of radioactive decay; Decay constant; Half-life and mean life; Binding energy and its calculation; Fission and fusion processes; Energy calculation in these processes.

Photoelectric effect; Bohr's theory of hydrogen-like atoms; Characteristic and continuous X-rays, Moseley's law; de Broglie wavelength of matter waves.

IIT-JEE Syllabus for Aptitude Test in B. Arch. & B. Des:

Freehand drawing: This would comprise of simple drawing depicting the total object in its right form and proportion, surface texture, relative location and details of its component parts in appropriate scale. Common domestic or day-to-day life usable objects like furniture, equipment, etc., from memory.

Geometrical drawing: Exercises in geometrical drawing containing lines, angles, triangles, quadrilaterals, polygons, circles etc. Study of plan (top view), elevation (front or side views) of simple solid objects like prisms, cones, cylinders, cubes, splayed surface holders etc.

Three-dimensional perception: Understanding and appreciation of three-dimensional forms with building elements, colour, volume and orientation. Visualization through structuring objects in memory.

Imagination and aesthetic sensitivity: Composition exercise with given elements. Context mapping. Creativity check through innovative uncommon test with familiar objects. Sense of colour grouping or application.

Architectural awareness: General interest and awareness of famous architectural creations - both national and international, places and personalities (architects, designers etc. ) in the related domain.

A Glimpse Of IIT-Delhi.

What rank you expect in the IIT-JEE from you preparations???????